合作信息详情介绍
蓄电池放电试验及注意事项 #行业最新资讯# 蓄电池放电试验及注意事项 蓄电池组平时在电力系统中只是属于一个备用设备,但在事故状态下,蓄电池组却是直流负荷的唯一供给者,一旦蓄电池出问题,光伏电站发电系统将面临瘫痪甚至发生重大事故,造成重大损失。 蓄电池充放电试验是保障蓄电池正常运行和提高其性能的重要手段,具有重要的实用价值。蓄电池是一种能够将化学能转化为电能的电池,常用于无线电通信、船舶、汽车等各个领域。对于蓄电池来说,充电和放电是其最基本的工作状态。因此,通过对蓄电池组定期进行充放电的试验,可以提高其性能,激发容量,延长使用寿命,及时发现并处理故障电池,防止问题扩大化。 满足定期充放电试验的条件: 1、电池搁置不用时间超过三个月; 2、单体电池浮充电压低于2.18V; 3、电池放出15%以上的额定容量; 4、电池浮充电状态运行一年以上; 5、对部分容量低的电池更换后; 6、蓄电池每年应进行一次核对性放电,放出额定容量的40~50%; 7、蓄电池每3年应进行一次容量试验,放出额定容量的80%。 蓄电池充放电试验的步骤如下: 1. 放电前,应提前对电池组做均充,以使电池组达到满充电状态,一般以2.35V/单体充电12小时,静置12-24小时。 2. 记录电池组浮充总电压、单体浮充电压、负载电流、环境温度以及整流器(或开关电源)的其它设置参数,同时检查所有的螺钉是否处于拧紧状态。 3. 结合基站/交换局的实际情况,断开电池组和开关电源之间的连接,确认假负载处于空载状态后,把假负载正确连接到电池组正负极上,15分钟后记录电池的开路电压。 蓄电池充放电试验的注意事项: 1. 测试前接线时应按照“先仪器,后设备”顺序进行接线,即:先接仪器端的连线,后接电池和充电机端的连线。测试完毕,用户拆线时应按“先电池,后设备”的顺序进行拆线,即:先拆电池和充电机端的连线,后拆仪器端的连线。 2. 把蓄电池组的正极和充电机的连线断开,然后把充放电电缆按“H”(红色)“M”(红色)“L”(黑色)将仪器对应的正、负极与充电机正极和电池组正、负极并接。 3. 连接仪器220V电源线,注意保护地线应可靠接地以保证人身安全及设备安全可靠的工作。 4. 用户仔细检查接线是否正确,注意正、负极接线是否正确。充电电缆严禁反接,否则会损坏设备。 5. 检查无误后,接通电源,充电监测仪开始工作。 6. 因蓄电池在运行中欠充、过充、过放、环境温度过高等都会使蓄电池的性能劣化,所以只有对其进行核对性放电才能客观、准确地测出蓄电池的真实容量,才能保证直流电源系统运行的可靠性。
发布人详细资料
发布人凌金华
公司浙江物产山鹰热电有限公司
职位总经理
城市嘉兴市
发布时间2025/03/26 00:20
电话号码136********
扫二维码查看完整信息
给你推荐相近的合作商机内容

凌金华
年需求100万吨生物质-燃煤电厂掺烧生物质燃料选择与技术适配分析 #行业最新资讯# 一、生物质燃料可得性与供应链稳定性1.木质颗粒- 原料可得性:主要依赖林业资源(木屑、木材加工副产品),集中分布于东北林区、南方速生林基地等。电厂若位于林区或木材产业带,则年供应100万吨生物质燃料需构建规模化供应链;非林区电厂则可能需跨省调运原料,汽车经济运输半径可达500km,同时也适应水运,目前已经成为一种全球运输的能源贸易产品。- 预处理要求:需破碎至粒径<10mm,含水率<15%,适配直接混合燃烧技术。2.木片- 原料可得性:木片直接来源于木材破碎,对于在林区或周围木业丰富电厂而言,应考虑在200公里运输半径内可确保稳定供应。 - 预处理要求:破碎至粒径<30mm,含水率需降至20%以下,否则易导致制粉系统效率下降。 3.秸秆打捆- 原料可得性:农业区(如东北、华北)年秸秆产量超过8亿吨,但需构建集中收储网络以应对季节性供应特征。满足100万吨需求需覆盖半径50-100公里的农业区域,并配备烘干设备控制含水率在25%以下。- 预处理要求:要求精细化除杂至含杂率低于5%,粒径破碎至小于30mm,并添加防结焦剂。 4.秸秆压块成型燃料 - 原料可得性:来源分散但加工后可集中供应,适配农业区分布式压块加工厂,运输半径可达200-300公里。年供应100万吨需布局10—15个中型压块厂(单厂产能6万-10万吨/年)。 - 预处理要求:压缩密度0.8—1.1g/cm³,含水率<20%,适配间接气化或并联燃烧技术。 5.对比结论: - 农业区优先选择秸秆压块,通过分布式加工网络平衡季节性供应风险; - 区林优先选择木质颗粒或木片,需配套破碎与干燥设备; - 秸秆打捆仅适合电厂周边50公里内资源密集区域,需高额预处理投资。二、掺烧技术适配性与锅炉改造要点1.直接混合燃烧 - 适用燃料:木质颗粒、烘焙生物质。 - 技术优势:无需大规模锅炉改造,木质颗粒能直接与煤粉入炉混燃,热值利用率高,锅炉效率下降不超过0.5%。 - 改造要点:增设防回火料斗与螺旋上料机;优化配风系统(二次风补入比例提升5%~10%)。 2.间接气化燃烧 - 适用燃料:秸秆压块、打捆、低质量木片。 - 技术优势:气化后的生物质煤气被喷入煤粉炉中,这一做法有效避免了高氯、高碱金属对锅炉的直接腐蚀,同时实现了高达20%的掺烧比例。 - 改造要点:增设气化炉与燃气净化系统(投资增加15%~20%);优化燃气喷入位置(避免高温区结焦)。 3.并联燃烧(蒸汽侧耦合) - 适用燃料:秸秆压块、木片。 - 技术优势:独立生物质锅炉与煤粉炉蒸汽系统集成,可适应多种燃料,热效率达84%~86%。 - 改造要点:新建生物质锅炉(炉排型或循环流化床);蒸汽管道与控制系统升级。 4.技术适配优先级- 高热值燃料(木质颗粒、烘焙生物质)适配直接混烧,改造成本最低; - 中低热值燃料(秸秆类)需配套气化或并联燃烧,投资较高但可规避腐蚀风险。三、燃料特性对锅炉效率与寿命的影响1.热值与燃烧效率- 木质颗粒:热值介于4200至4500千卡/千克之间,掺烧比例达20%时,锅炉效率降低小于1%。- 秸秆压块:热值3800-4200 kcal/kg,气化后热值利用率提升至80%,效率下降约4%~6%。- 秸秆打捆:热值3200-3800 kcal/kg,直接混烧效率下降5%~8%。2.腐蚀与磨损风险 - 秸秆类燃料:高氯(水稻秸秆Cl⁻达0.5%)、高碱金属(K、Na)易引发高温腐蚀,需采用SA-213TP347H抗腐蚀钢材或低温燃烧技术(<800℃)。- 木质燃料:灰分<1%,硫含量低,对锅炉寿命影响最小。 3.灰分与结渣控制 - 秸秆灰分:3%~5%,熔点低(<1000℃),需配套旋风除尘+水膜净化设备。 - 木质灰分:<1%,无需额外清灰系统。 4.运维建议: - 对于秸秆类燃料的掺烧,需每月检查炉膛结焦状况,并每年对高温区的受热面管道进行更换。 - 木质燃料可延长检修周期至2年。四、综合推荐方案1.燃料-技术匹配策略 - 方案一(林区电厂): - 燃料:木质颗粒(60%)+木片(40%); - 技术:直接混合燃烧(木质颗粒)+破碎预处理(木片); - 优势:热值稳定可靠,改造投资较低(约为5000万元)。 - 方案二(农业区电厂):- 燃料:秸秆压块(70%)+烘焙生物质(30%); - 技术:间接气化(压块)+直接混烧(烘焙生物质); - 优势:原料成本低廉(约400元/吨),减排效果十分显著。 2.供应链管理要点 - 秸秆压块:建立“农户-压块厂-电厂”三级收储体系,配套移动式破碎设备降低运输成本。- 木质颗粒:与相关企业签订长期供应协议,锁定价格波动风险。3.经济性测算(年需求100万吨)- 秸秆压块:燃料成本4亿-6亿元/年,预处理与气化设备投资2亿-3亿元; - 木质颗粒:燃料成本8亿-12亿元/年,改造投资0.5亿-1亿元; - 投资回收期:需要综合考虑燃料成本、锅炉效率和锅炉维修成本对改造投资回收期的影响。 五、建议与结论1.区域化选择优先级 - 东北/华北农业区:采用秸秆压块与间接气化技术,并配套分布式加工网络; - 南方林区/沿海进口便利区:利用木质颗粒进行直接混烧,同时依托相关的供应链; - 老旧电厂改造:采用烘焙生物质(即热解炭化技术),以适配原有的制粉系统。 2.政策与技术协同 - 积极争取秸秆收储相关的补贴政策,如农机购置补贴和仓储建设补助等; - 引入烘焙、气化等预处理技术降低燃料差异性。 3.风险管控- 建立原料储备库,储备量足以应对3个月的季节性断供问题; - 与科研机构合作开发低氯秸秆预处理工艺。 4.结论- 若电厂资金充裕且追求长期稳定,优先选择木质颗粒直接混烧; - 若以降本为核心且原料供应可靠,优先考虑秸秆压块气化; - 避免未预处理的秸秆打捆直接混烧,需严格配套除杂与防腐系统。联合优发专注于碳中和服务、碳资产管理和零碳热能服务,以提供生物质零碳解决方案为使命,推动零碳社会建设。企业碳中和业务始于2005年,近20年为国内外上千家客户/机构提供多项能源/双碳领域服务,管理碳资产超 5000 万吨,团队经验丰富!

凌金华
#行业最新资讯# 为什么烟囱要建那么高?电厂、钢厂经常会发现有非常高的烟囱,为什么这些烟囱要建那么高呢?主要有方面的考虑。一、用高度保障足够吸力,克服超大系统阻力,维持生产稳定这些行业的生产流程中,排烟系统极其复杂,每小时排烟量高达数十万立方米,排烟量巨大,且需要经过多道净化工艺处理,阻力远大于普通工业,需要依赖高烟囱产生的压差推动烟气流动,抵消系统阻力确保烟气持续向上,避免烟气倒灌或负压失衡。二、用高度降低地面污染物浓度,满足环保要求根据大气扩散的原理,污染物落地浓度与烟囱有效高度的平方成反比,这些行业大气污染物排放重点行业,排放的污染物不仅量大,且成分复杂,高烟囱的核心作用是利用大气扩散规律,降低地面敏感点浓度,确保环境质量不受影响。同时,近地面易形成逆温层,像盖子一样阻止污染物扩散,导致近地面雾霾或局部污染。高烟囱可将烟气排入逆温层之上的自由大气,借助高空强对流快速扩散,避免污染物贴地累积。三、用高度避免烟气回流,保护厂区安全与生产环境这些行业的厂区面积大,且生产装置密集,排烟量巨大,烟气成分复杂,若烟囱过矮,矮烟囱排出的烟气易被周边高大设备阻挡,形成涡流回流,导致污染物重新沉降到厂区内,高烟囱的排烟高度远高于厂区设备,可有效避免这些风险。

A 朱宏
铁氟龙/特氟龙/聚四氟乙烯/PTFE/PFA/FEP/PEEK/PVDF等各类特种工程塑料,🉑来图定制。四氟制品(棒、板、膜、管、异形件加工)132********微信同号

凌金华
截止阀为什么要低进高出?什么情况下高进低出? #行业最新资讯# 截止阀又称截门阀,属于强制密封式阀门,是截断类阀门的一种。按连接方式分为三种:法兰连接、丝扣连接、焊接连接。 这种类型的截流截止阀阀门非常适合作为切断或调节以及节流用。由于该类阀门的阀杆开启或关闭行程相对较短,而且具有非常可靠的切断功能,又由于阀座通口的变化与阀瓣的行程成正比例关系,非常适合于对流量的调节。 截止阀设计为低进高出,目的是使流动阻力小,在开启阀门时省力。同时阀门关闭时,阀壳和阀盖间的垫料与阀杆周围的填料不受力,不致长时间受到介质压力和温度的作用可延长使用寿命,减少泄漏的几率。另外这样还可在阀门关闭的状态下更换或增添填料,便于维修。 一般情况下截止阀都是低进高出,然而也有一些特殊情况截止阀是高进低出: 1、直径大于100mm的高压截止阀 由于大直径阀门密封性能差,采用这种方法截止阀在关闭状态下,介质压力作用在阀瓣上方,以增加阀门的密封性。 2、旁路管道上串联的两个截止阀,第二个截止阀要求“高进低出” 为保证一个检修周期内阀门的严密性,经常启闭操作的阀门要求装设两个串联的截止阀。 3、锅炉排气、放空截止阀 锅炉排气、放空截止阀仅在锅炉启动上水过程中使用,启闭频率小,但常常由于密封不严而造成工质损失,为此有的电厂为了提高严密性将此类截止阀安装方向“高进低出”。 4、电磁速断阀 电磁速断阀的功能是快速关闭,迅速切断燃油供应。电磁速断阀的结构和截止阀的结构相似,如果电磁速断阀也是工质从下部进入,上部流出,则燃油作用在电磁速断阀阀瓣下部的力很大,而电磁速断阀的重锤远小于它。 因此,如果工质从下部进入速断阀,则因重锤产生力矩小于燃油压力产生的力矩,当速断阀动作时不能将燃油切断,因而达不到预期的目的。 如果工质从速断阀上部进入,则由于速断阀一旦动作后,阀后压力迅速降低,燃油作用在阀瓣下部的力很快降为零,而燃油作用在阀瓣上的力和重锤、杠杆的重力所形成的力。 一般大口径和高压状态下采用低进高出的话关闭阀门比较困难,如果在高压大口径状态下采用低进高出,阀杆长期受到水压力容易变形弯曲,影响阀门的安全性和密封性;选用高进低处的话对阀杆直径就可以小点,对于厂家和使用者来说也会节约点成本。

凌金华
变送器的选型原则 #行业最新资讯# 变送器选型一般可遵循以下具体步骤:明确测量任务与要求确定测量参数:明确需要测量的物理量,如压力、温度、流量、液位等,这是选型的基础,不同的物理量需要选用相应类型的变送器,如压力变送器用于测量压力,温度变送器用于测量温度等。了解测量介质特性:详细了解被测介质的性质,包括是否具有腐蚀性、粘稠度、导电性,以及是否含有颗粒杂质等。例如,测量强腐蚀性的硫酸,就需要选择能抗硫酸腐蚀的特殊材质的变送器。确定测量范围:根据实际工艺要求,确定被测参数的变化范围。比如,测量某管道内的压力,压力波动范围在 0-10MPa 之间,那么所选压力变送器的测量范围应能覆盖这个区间,并适当留有余量。明确精度要求:根据具体的应用场景和工艺控制要求,确定所需的测量精度。例如,在化工生产的关键计量环节,可能需要精度达到 0.1% 的变送器;而在一些一般性的监测场合,精度为 0.5% 的变送器也许就能够满足需求。确定输出信号类型:根据后续控制系统的要求,选择合适的输出信号。常见的有 4-20mA 电流信号、0-10V 电压信号、数字信号(如 HART、Profibus 等)。如果控制系统采用传统的模拟量输入模块,那么 4-20mA 或 0-10V 输出的变送器较为合适;若控制系统是数字化的,具有数字通信接口的变送器则更便于集成。考虑工作环境条件环境温度与湿度:了解变送器安装位置的环境温度和湿度范围。如果环境温度变化剧烈,需要选择具有温度补偿功能的变送器;在高湿度或潮湿环境中,应选择具有良好防潮、防水性能的变送器,如防护等级达到 IP67 的产品。电磁干扰情况:判断安装现场是否存在强电磁干扰源,如大型电机、变频器、高频设备等。若存在强电磁干扰,就需要选择具有良好电磁兼容性(EMC)的变送器,以保证测量信号的准确性和稳定性。防爆要求:对于存在易燃易爆气体、蒸汽或粉尘的危险场所,如石油化工车间、煤矿井下等,必须选择具有相应防爆等级的变送器,如隔爆型(d)或本质安全型(i)变送器,以确保安全生产。空间布局与安装方式:考虑变送器安装位置的空间大小和形状,以及周围设备的布局情况,选择合适外形尺寸和安装方式的变送器。例如,在空间狭小的地方,可能需要选择小巧紧凑、易于安装的变送器;对于一些需要在线安装的场合,选择具有合适连接方式(如螺纹连接、法兰连接等)的变送器。评估可靠性与维护性品牌与质量:查阅相关资料,了解不同变送器品牌的市场声誉、产品质量和用户评价。选择知名品牌、具有良好口碑的变送器,通常这些产品在设计、制造工艺、材料选用等方面更有保障,能够提供更可靠的性能和更长的使用寿命。产品认证:检查变送器是否具备相关的质量认证和行业标准认证,如 ISO9001 质量管理体系认证、CE 认证、UL 认证等。这些认证是产品质量和性能符合相关标准的重要依据。维护便捷性:选择结构简单、易于维护的变送器,例如具有自诊断功能、故障报警功能的变送器,能够方便快速地进行故障排查和维护。同时,考虑变送器的易损件是否容易获取,维修是否需要特殊工具和专业技能等因素。进行成本分析采购成本:对不同品牌、型号和规格的变送器进行价格比较,在满足测量要求和性能指标的前提下,选择性价比高的产品。但要注意,不能仅仅以价格作为唯一的选择标准,过低的价格可能意味着产品质量和性能的不足。运行成本:考虑变送器在运行过程中的能耗、维护费用、备件更换成本等。例如,智能变送器虽然采购成本可能较高,但由于其具有更低的能耗、更高的测量精度和更好的自诊断功能,长期运行下来可能会降低总体成本。生命周期成本:综合考虑变送器的整个生命周期成本,包括采购成本、安装调试成本、运行成本、维护成本和报废处理成本等。通过对不同产品的生命周期成本进行分析和比较,选择总成本最低的变送器。综合评估与决策技术性能比较:根据前面步骤所收集的信息,对各个备选变送器的技术性能进行详细比较,包括测量精度、稳定性、响应时间、量程范围、输出信号等,确保所选变送器能够满足实际测量任务的要求。供应商服务:评估变送器供应商的售后服务质量,包括技术支持、培训服务、维修响应时间、备件供应等。良好的供应商服务能够为用户在使用过程中提供有力的保障,减少因设备故障而带来的损失。最终选型决策:综合考虑测量要求、工作环境、可靠性、维护性、成本以及供应商服务等多方面因素,权衡利弊,做出最终的选型决策。选择最适合具体应用场景和需求的变送器,以实现最佳的测量效果和经济效益。在完成选型后,还可通过与供应商沟通技术细节、参观实际应用案例等方式进一步确认所选变送器的适用性,如有必要,也可进行样品测试或试用,确保最终选择的变送器能够完全满足实际需求。
今日注册人数
6440
今日找供应人数
3112
今日找求购人数
7039
今日加入群人数
13495
今日热门资讯

