找合作、找微信群、找订单、找采购商、找供应商
群友通讯录帮你找到5000万生意伙伴
找企业
找业务
找采购
找供应
找社群
查找
合作信息详情介绍

企业如何理解和管理“范围一”碳排放? #行业最新资讯# 在全球迈向低碳经济的过程中,碳排放管理已经成为企业不可忽视的责任和挑战。作为企业碳排放的直接来源,范围一”碳排放对企业实现可持续发展目标至关重要。那么,什么是范围一碳排放?企业又该如何有效管理呢?今天,我们就带大家一起来了解一下。 什么是范围一碳排放? 简单来说,范围一碳排放(Scope 1)是指企业直接产生的温室气体排放。它来自企业自身运营过程中控制的设备和设施的排放,主要包括以下几类: 1. 固定燃烧源    企业在日常生产或办公过程中,会使用锅炉、发电机等设备燃烧化石燃料(如天然气、柴油等),这些过程中产生的二氧化碳等温室气体就是典型的范围一排放。 2. 移动燃烧源    企业自有的车辆、物流车队在运输过程中燃烧燃油,这些产生的排放同样属于范围一。无论是工地上的机械设备,还是物流配送的货车,只要是由企业控制的,都算作范围一的排放。 3. 工业过程排放     一些行业在生产制造过程中,除了燃烧产生的温室气体外,某些化学反应也会释放温室气体。例如,水泥和钢铁制造等行业的生产环节都会有这种排放 4. 逃逸排放    逃逸排放是指设备在运行过程中因泄漏或意外释放的温室气体。例如,空调、冷藏设备中的制冷剂泄漏或是天然气管道的泄漏,都是范围一排放的来源。  为什么管理范围一碳排放很重要? 管理范围一排放,不仅是对环境负责,更是对企业未来可持续发展的有力保障: 助力企业绿色转型    减少范围一排放是企业绿色转型的第一步。通过控制自身排放,企业可以向市场、投资者和消费者展示其对环境保护的承诺,从而提升企业形象和竞争力。 降低运营成本    控制排放通常伴随着提高能源使用效率的举措。通过优化燃料使用或改用清洁能源,企业可以在降低排放的同时减少能源成本,实现“双赢”。 应对政策压力    随着全球各国碳减排政策的日益严格,企业面临的合规要求也在逐渐增加。提前采取措施,减少范围一排放,有助于企业避免因未达标而产生的经济处罚或信用风险。 企业如何有效管理范围一碳排放? 要有效管理范围一排放,企业可以从以下几个方面入手: 1. 能源效率提升    对企业的生产设备、运输工具进行技术改造,提高能源利用率,减少化石燃料的使用量。 2. 清洁能源替代      尽量使用清洁能源,例如光伏发电、风能等,替代传统的化石燃料能源,减少排放。 3. 定期设备维护     加强设备的日常维护,及时修复泄漏点,避免制冷剂或其他气体的逃逸排放。 4. 使用低碳技术      借助先进的低碳技术,例如碳捕集和封存技术(CCS),减少工业过程中的排放量。 结语 面对气候变化的挑战,企业承担的责任越来越重大。范围一碳排放是企业实现绿色发展的第一道关卡,只有主动采取措施,减少直接排放,才能在未来的低碳竞争中立于不败之地。现在,是时候行动起来,为企业的可持续发展贡献力量!

发布人详细资料
发布人凌金华
公司浙江物产山鹰热电有限公司
职位总经理
城市嘉兴市
发布时间2025/01/09 08:19
电话号码136********
圈子二维码
扫二维码查看完整信息
给你推荐相近的合作商机内容
头像
凌金华
头像点击查看采购信息
蓄电池放电试验及注意事项 #行业最新资讯# 蓄电池放电试验及注意事项 蓄电池组平时在电力系统中只是属于一个备用设备,但在事故状态下,蓄电池组却是直流负荷的唯一供给者,一旦蓄电池出问题,光伏电站发电系统将面临瘫痪甚至发生重大事故,造成重大损失。         蓄电池充放电试验是保障蓄电池正常运行和提高其性能的重要手段,具有重要的实用价值。蓄电池是一种能够将化学能转化为电能的电池,常用于无线电通信、船舶、汽车等各个领域。对于蓄电池来说,充电和放电是其最基本的工作状态。因此,通过对蓄电池组定期进行充放电的试验,可以提高其性能,激发容量,延长使用寿命,及时发现并处理故障电池,防止问题扩大化。 满足定期充放电试验的条件: 1、电池搁置不用时间超过三个月; 2、单体电池浮充电压低于2.18V; 3、电池放出15%以上的额定容量; 4、电池浮充电状态运行一年以上; 5、对部分容量低的电池更换后; 6、蓄电池每年应进行一次核对性放电,放出额定容量的40~50%; 7、蓄电池每3年应进行一次容量试验,放出额定容量的80%。 蓄电池充放电试验的步骤如下: 1. 放电前,应提前对电池组做均充,以使电池组达到满充电状态,一般以2.35V/单体充电12小时,静置12-24小时。 2. 记录电池组浮充总电压、单体浮充电压、负载电流、环境温度以及整流器(或开关电源)的其它设置参数,同时检查所有的螺钉是否处于拧紧状态。 3. 结合基站/交换局的实际情况,断开电池组和开关电源之间的连接,确认假负载处于空载状态后,把假负载正确连接到电池组正负极上,15分钟后记录电池的开路电压。 蓄电池充放电试验的注意事项: 1. 测试前接线时应按照“先仪器,后设备”顺序进行接线,即:先接仪器端的连线,后接电池和充电机端的连线。测试完毕,用户拆线时应按“先电池,后设备”的顺序进行拆线,即:先拆电池和充电机端的连线,后拆仪器端的连线。 2. 把蓄电池组的正极和充电机的连线断开,然后把充放电电缆按“H”(红色)“M”(红色)“L”(黑色)将仪器对应的正、负极与充电机正极和电池组正、负极并接。 3. 连接仪器220V电源线,注意保护地线应可靠接地以保证人身安全及设备安全可靠的工作。 4. 用户仔细检查接线是否正确,注意正、负极接线是否正确。充电电缆严禁反接,否则会损坏设备。 5. 检查无误后,接通电源,充电监测仪开始工作。 6. 因蓄电池在运行中欠充、过充、过放、环境温度过高等都会使蓄电池的性能劣化,所以只有对其进行核对性放电才能客观、准确地测出蓄电池的真实容量,才能保证直流电源系统运行的可靠性。
头像
凌金华
头像点击查看采购信息
离心泵基础‖离心泵主要理论及简要介绍 #行业最新资讯# 离心泵的理论发展经历了漫长的过程,以下列出了一些主要理论及其简要介绍。1.  伯努利方程(Bernoulli 's Equation)提出时间:1738年提出者:丹尼尔·伯努利(Daniel Bernoulli)说明:伯努利方程描述了理想流体(无粘性、不可压缩)在稳定流动过程中,沿流线的能量守恒关系。它表明,在重力场中,流体的压力能、动能和势能之和保持不变。方程:p + ½ρv² + ρgh = C其中,p = 流体中某点的压强,Paρ = 流体密度,kg/m³v = 流体该点的流速,m/sg = 重力加速度,m/s²h = 该点所在高度,mC = 一个常量各项意义:p 代表流体的压力能,即流体由于压力而具有的能量。½ρv² 代表流体的动能,即流体由于运动而具有的能量。ρgh 代表流体的势能,即流体由于高度而具有的能量。意义:这一理论为离心泵的工作原理提供了重要的理论支持,即离心泵通过叶轮的旋转将流体的机械能转化为动能和势能,从而实现流体的输送。伯努利方程还可以解释许多流体现象,例如,飞机机翼产生升力的原理;文丘里管测量流量的原理等。2.  欧拉方程(Euler's Equation)提出时间:1755年提出者:莱昂哈德·欧拉(Leonhard Euler)说明:欧拉方程是离心泵理论的基础,它描述了理想流体在叶轮中的能量转换过程。该方程表明,泵的扬程与叶轮的圆周速度、流量以及叶片进出口角度有关。方程:H = (u₂v₂ - u₁v₁)/g式中,H = 扬程,mu = 叶轮圆周速度,m/sv = 流体绝对速度的切向分量,m/sg = 重力加速度意义:欧拉方程为离心泵的设计和性能预测提供了理论基础。3.  相似定律(Similarity Laws)提出时间:19 世纪中叶至20世纪初提出者:多位科学家,包括威廉·弗劳德(William Froude,英国工程师,于19世纪中叶提出了弗劳德数,用于比较船舶模型的阻力)、奥斯本·雷诺(Osborne Reynolds,英国工程师,于19世纪末提出了雷诺数,用于区分层流和湍流)和路德维希·普朗特(Ludwig Prandtl,德国工程师,于20世纪初提出了边界层理论,为相似定律的应用奠定了基础)说明:相似定律描述了几何相似的离心泵在相似工况下性能参数之间的关系。这些定律包括:流量与转速成正比、扬程与转速的平方成正比、功率与转速的立方成正比。常用的相似定律:几何相似 - 模型和实际系统具有相同的几何形状。运动相似 - 模型和实际系统具有相同的运动状态。动力相似 - 模型和实际系统具有相同的受力情况。意义:相似定律可用于离心泵的模型试验(将小规模模型试验的结果应用于实际泵的设计中,提高设计效率和精度)、性能换算和工况调节。4.  比转速(Specific Speed)提出时间:19世经中叶到20 世纪初提出者:多位科学家,包括詹姆斯·汤姆森(James Thomson,1850年)和罗伯特·曼宁(Robert Manning,1890年)说明:比转速是一个无量纲参数,用于表征离心泵的几何形状和性能特征。它定义为在最大直径叶轮和在给定转速下,在最佳效率点的流量时,涉及泵性能的指数。公式:Ns = nQ0.5 / H0.75式中,Ns = 比转速n = 转速,rpmQ = 流量,m3/sH = 单级扬程,m意义:比转速是在相似定律的基础上导出的一个包括流量、扬程和转数在内的综合特征数,它是计算泵结构参数的基础。比转速可用于离心泵的分类、选型和设计。5.  汽蚀理论(Cavitation Theory)提出时间:1859年提出者:英国工程师詹姆斯·汤姆森(James Thomson)说明:汽蚀理论解释了当泵内局部压力低于液体饱和蒸汽压时,液体汽化形成气泡,气泡破裂时产生冲击力,导致泵性能下降和部件损坏的现象。汽蚀又称卡维塔现象。关键参数:必需汽蚀余量(NPSHr)和装置汽蚀余量(NPSHa)。意义:汽蚀理论为离心泵的设计和运行提供了重要指导,以避免汽蚀的发生。6.  湍流模型(Turbulence Models)提出时间:20 世纪中叶至今提出者:有多位科学家,包括安德雷·柯尔莫哥洛夫(Andrey Kolmogorov,俄罗斯数学家,1941年)、约翰·冯·诺依曼(John von Neumann,匈牙利裔美国数学家,1940年)和布莱恩·斯波尔丁 (Brian Spalding,英国工程师,1970年代提出了k-ε湍流模型,这是第一个广泛应用于工程实践的湍流模型)。说明:湍流模型用于描述和预测离心泵内部的复杂湍流流动。常用的湍流模型包括:k-ε 模型 - 最常用的湍流模型,适用于大多数工程应用。k-ω 模型 - 适用于壁面附近流动和分离流的模拟。大涡模拟(LES) - 适用于模拟大尺度湍流结构。分离涡模拟(DES) - 结合了 RANS 和 LES 的优点,适用于模拟复杂流动。意义:湍流模型为离心泵的数值模拟和性能优化提供了重要工具。7.  转子动力学(Rotor Dynamics)提出时间:20 世纪中叶至今提出者:有多位科学家,包括罗伯特·毕晓普(Robert Bishop,英国工程师,1950年代提出了转子动力学的基本理论)、威廉·迈尔斯(William Myklestad,美国工程师,1950年代提出了用于分析转子系统振动的 Myklestad 方法)和杰拉尔德·施瓦茨(Gerald Schwarz,美国工程师,于1960年代提出了用于分析转子系统稳定性的 Schwarz 方法)说明:转子动力学研究离心泵转子系统在运行过程中的振动、稳定性和动态响应。它考虑了转子、轴承、密封和流体之间的相互作用。关键概念:临界转速 - 转子系统发生共振时的转速。模态分析 - 分析转子系统的固有频率和振型。不平衡响应 - 分析转子系统在不平衡力作用下的振动响应。稳定性分析 - 分析转子系统在受到扰动后恢复平衡状态的能力。意义:转子动力学对于旋转机械的设计、分析和故障诊断具有重要意义,为离心泵的设计和运行提供了重要指导,以确保其稳定性和可靠性。8.  其它理论边界层理论(Boundary Layer Theory):描述流体在固体表面附近的流动特性。二次流理论(Secondary Flow Theory):解释离心泵内部由于离心力和科里奥利力引起的复杂流动现象。汽蚀侵蚀理论(Cavitation Erosion Theory):研究气泡破裂对材料表面的侵蚀机制。总结离心泵的理论发展是一个不断演进的过程,以上列出的理论只是其中的一部分。随着科技的进步和应用的拓展,新的理论和方法将不断涌现,不断推动离心泵技术向更高水平发展。
头像
凌金华
头像点击查看采购信息
管道焊缝间距的相关规范要求 #行业最新资讯# (1)GB50316《工业金属管道设计规范》规定:两条对接焊缝间的距离,不应小于3倍焊件的厚度,需焊后热处理时,不宜小于6倍焊件的厚度。且应符合下列要求。     ①公称直径 小于50mm的管道,焊缝间距不宜小于50mm。     ②公称直径大于或等于50mm的管道,焊缝间距不宜小于100mm。     ③管道的环焊缝不宜在管托的范围内。需热处理的焊缝从外侧距支架边缘的净距宜大于焊缝宽度的5倍,且不应小于100mm。     ④不宜在管道焊缝及边缘上开孔与接管。不可避免时,应经强度校核     ⑤管道在现场弯道的弯曲半径不宜小于3.5倍管外径:焊缝距弯管的起弯点不宜小于100mm,且不应小于管外径。     ⑥管道穿过安全隔离墙时应加套管。在套管内的管段不应有焊缝,管子与套管间的间隙应以不燃烧的软质材料填满。(2)GB/T20801《压力管道规范工业管道》规定:压力管道直管段对接焊缝当公称管径大于等于 150mm 时,焊缝间距不小于 150mm,当公称管径小于 150mm 时,不小于管子外径。(3)GB50235《工业金属管道工程施工及验收规范》对管道焊缝位置规定:    ① 直管段上两对接焊口中心面间的距离,当公称直径大于或等于150mm时,不应小于150mm;当公称直径小于150mm时,不应小于管子外径。  ②焊缝距离弯管(不包括压制、热推或中频弯管)起弯点不得小于100mm,且不得小于管子外径。     ③卷管的纵向焊缝 应置于易检修的位置,且不宜在底部。(4)SH 3501《石油化工有毒可燃介质管道工程施工及验收规范》的规定,管道焊缝的设置,应便于焊接、热处理及检验,并应符合下列要求,     ①除采用无直管段的定型弯头外,管道焊缝的中心与弯管起弯点的距离不应小于管子外径,且不小于 100mm。     ②焊缝与支、吊架边缘的净距离不应小于50mm。需要热处理的焊缝距支、吊架边缘的净距离应大于焊缝宽度的2倍,且不小于100mm。 ③管道两相邻焊缝中心的间距,应控制在下列范围内:直管段两环缝间距不小于100mm,且不小于管子外径;除定型管件外,其他任意两焊缝间的距离不小于50mm。
头像
凌金华
头像点击查看采购信息
汽轮机转子找中心的步骤详解、注意事项、计算公式。 #行业最新资讯# 一、汽轮机转子找中心主要有以下步骤: 1.准备工作确认汽轮机已安装好基础部分,如轴承座就位,转子初步放置在轴承上。同时,要清理干净轴承座和转子表面,保证无杂物和油污影响测量。准备好找中心的工具,像百分表、磁性表座、塞尺等,并且检查工具的精度和可靠性。 2.安装测量工具把百分表安装在磁性表座上,然后将表座固定在稳固的基础部分,比如轴承座或汽缸上。调整百分表位置,使测量头能垂直地接触在转子的轴颈或者联轴器的外圆及端面。 3.测量初始数据慢慢盘动转子,使转子转动一周或多周,同时观察并记录百分表在不同位置的读数,主要记录垂直和水平两个方向的数值,这些数据代表了转子原始的中心偏差情况。 4.数据分析根据记录的百分表数值,计算出转子在垂直和水平方向相对于基准位置的偏差量和倾斜情况,确定需要调整的方向和大致的调整量。 5.调整对于需要调整的轴承座,通过增减垫片来改变轴承座的高度,调整垂直方向的中心位置。垫片一般选用不锈钢材质,要确保垫片平整、无毛刺。在水平方向,可以通过移动轴承座来进行调整,移动时要使用合适的顶丝或者千斤顶,操作过程中要随时监测百分表数值的变化。 6.复核完成调整后,再次盘动转子,按照前面的测量方法重新测量,检查中心偏差是否在允许的范围内。如果仍不符合要求,需要重复调整和测量的步骤,直到满足要求为止。二、汽轮机转子找中心过程中有以下注意事项: 1.安全方面盘动转子前,确保所有人员远离旋转部件,防止被卷入发生危险。操作千斤顶、顶丝等工具时,防止其突然松脱或滑动,造成设备损坏和人员受伤。 2.工具使用对于百分表,安装时要保证其牢固性,并且测量杆要垂直于被测表面,避免读数误差。每次使用前检查百分表指针是否能灵活转动、指针是否归零。使用塞尺时,插入间隙的力度要适中,避免用力过度损坏塞尺或改变间隙。 3.数据测量与记录盘动转子的速度要均匀缓慢,这样才能保证百分表读数的准确性。通常手动盘动转子,每秒约1/4 - 1/2转比较合适。数据记录要及时、准确,最好多人配合,一人读数一人记录,同时要注明每次测量对应的转子位置(如0°、90°、180°、270°等)。 4.调整过程增减垫片时,垫片的规格和数量要符合要求。垫片要平整干净,厚度均匀,放入轴承座下时要确保位置准确。移动轴承座调整水平位置时,要注意观察各部件之间的连接情况,避免连接部件受到过大的应力而损坏。5.环境因素找中心工作尽量在温度相对稳定的环境下进行,因为温度变化会导致部件热膨胀或冷收缩,影响找中心的准确性。如果环境温度不稳定,要考虑温度对部件尺寸的影响,必要时进行温度补偿计算。三、汽轮机转子找中心的计算公式
头像
凌金华
头像点击查看采购信息
【压力管道】压力管道有关概念及特点 #行业最新资讯# 1有关概念管道管道(Piping)由管道组成件、管道支承件组成,用于输送、分配、混合、分离、排放、计量、控制或截止流体流动。管道组成件管道组成件是用于连接或装配管道的元件,包括管子(Pipe)、管件、法兰、垫片、螺栓、阀门以及管道特殊件等设施。管道支承件管道支承件(Pipe-supporting Elements)是管道安装件和附着件的总称。安装件安装件(Fixtures)是将负荷从管子或管道附着件上传递到支承结构或设备上的元件,包括吊杆、弹簧支吊架、斜拉杆、平衡锤、松紧螺栓、支撑杆、链条、导轨、锚固件、鞍座、垫板、滚柱、托座和滑动支架等。附着件附着件(Structural Attachment)是用焊接、螺栓连接或夹紧等方法附装在管子上的零件,包括管吊、吊(支)耳、圆环、夹子、吊夹、紧固夹板和裙式管座等。压力管道压力管道(Pressure Piping)是生产、生活中广泛使用的可能引起燃爆或中毒等危险性较大的特种设备。压力管道是指利用一定的压力,用于输送气体或者液体的管状设备,其范围规定为最高工作压力大于或等于0.1MPa(表压)的气体、液化气体、蒸汽介质或者可燃、易爆、有毒、有腐蚀性、最高工作温度高于或等于标准沸点的液体介质,且公称直径大于50mm的管道。2压力管道的特点国务院颁布的《特种设备安全监察条例》明确规定,压力管道和锅炉、压力容器、起重机械并列为不安全因素较多的特种设备。压力管道的特点包括以下几点。①压力管道是一个系统,相互关联相互影响,牵一发动全身。②压力管道长径比很大,极易失稳,受力情况比压力容器更复杂。压力管道内流体流动状态复杂,缓冲余地小,工作条件变化频率比压力容器高(如高温、高压、低温、低压、位移变形、风、雪、地震等都可能影响压力管道受力情况)。③管道组成件和管道支承件的种类繁多,各种材料各有特点和具体技术要求,材料选用复杂。④管道上的可能泄漏点多于压力容器,仅一个阀门通常就有五处。⑤压力管道种类多,数量大,设计、制造、安装、检验、应用管理环节多,与压力容器大不相同。
扫码加入采购商合作群
扫码加入采购商合作群