塑料加工
铁氟龙/板/管/棒/膜 四氟槽/桶/盆/异形/定制/焊接/一体成型/欢迎各位来厂考察指导!132********
发布人详细资料
发布人A 朱宏
公司广东铁氟龙厂家
职位开发经理
城市东莞市
发布时间2024/12/09 13:03
电话号码132********
扫二维码查看完整信息
给你推荐相近的合作商机内容

A 朱宏

铁氟龙/特氟龙/聚四氟乙烯/PTFE/PFA/FEP/PEEK/PVDF等各类特种工程塑料,🉑来图定制。四氟制品(棒、板、膜、管、异形件加工)132********微信同号

凌金华

流量计安装对直管段的要求 #行业最新资讯# 正确地选择安装地点和正确安装流量计都是非常重要的环节,若安装环节失误轻者影响测量精度,重者会影响流量计的使用寿命,甚至会损坏流量计。不同流量计所要求的前后直管段长度是不一样的。 一、《自动化仪表工程施工及验收规范》-GB50093-2013中对流量计上下游直管段的通常要求如下: 质量流量计---无要求; 转子流量计---上游不小于 0~5 倍管径,下游无要求; 靶式流量计---上游不小于 5 倍管径,下游不小于3 倍管径; 涡轮流量计---上游不小于 5~20 倍管径,下游不小于3~10 倍管径; 涡街流量计---上游不小于 10~40 倍管径,下游不小于5 倍管径; 电磁流量计---上游不小于 5~10 倍管径,下游不小于0~5 倍管径; 超声波流量计---上游不小于 10~50 倍管径,下游不小于5 倍管径; 容积式流量计---无要求; 孔板---上游不小于 5~80 倍管径,下游不小于2~8 倍管径; 喷嘴---上游不小于 5~80 倍管径,下游不小于4 倍管径; 文丘里管 、弯管、楔形管---上游不小于 5~30 倍管径,下游不小于4 倍管径; 均速管---上游不小于 3~25 倍管径,下游不小于2~4 倍管径 二、流量计安装点的要求 1、若流量计安装点上游有90°弯头或下行接头,流量计上游应有不小于20D的等径直管段,下游应有不小于5D的等径直管段。 2、若流量计安装点上游在同一平面内有90°弯头,流量计上游应有不小于25D的等径直管段,下游应有不小于5D的等径直管段。 3、若流量计安装点上游有渐缩管 ,流量计上游应有不小于15D的等径直管段,下游应有不小于5D的等径直管段。 4、若流量计安装点上游有渐扩管,流量计上游应有不小于18D的等径直管段,下游应有不小于5D的等径直管段。 三、特别注意: 1、涡街流量计 安装点上游较近处若安装有阀门,不断地开关阀门对流量计的使用寿命影响极大,极易对流量计造成永久性的损坏。 2、流量计尽量避免在架空的且较长的管道上安装,因为流量计的下垂非常容易造成流量计与法兰处的密封泄漏,如果不得已要安装时,必须在流量计上下游2D处设置管道紧固装置。 3、质量流量计 的安装对前后直管段无特殊要求。但必须满足以下条件: (1)对于液体介质,应使流量计处于管道低点。避免因背压过低而使介质汽化,影响测量结果。对于气体介质,不能使流量计处于管道局部低点,以避免测量管中有积液而产生测量误差。 (2)对于液体介质,在运行过程中必须保证介质充满管道。不能使测量管中存在气液或液固两相流体。如果安装在垂直管道上,应使流体自下向上流动。如果必须从上向下流动,则可在流量计后设置一个限流孔板 ,防止测量管被抽空。 (3)流量计与连接法兰必须完全对准,否则会给测量管带来外应力而影响测量结果。 (4)要避免强电磁场对流量计造成干扰,流量计附近不能有大电机等干扰源。 (5)同型号的质量流量计相邻安装时考虑将震动频率错开,避免共振产生的负面影响,而且两台流量计的间距至少相当于仪表长度的4倍。 (6)注意将流量计相位测量的固有振动频率与管道固有的振动频率,否则将引起测量的波动。 (7)流量计前后应安装截止阀门,以方便运行前进行零点校正。 4、转子流量计必须安装在介质流向自下向上的、无振动的垂直管道上。安装时要保证流量计前应有不小于5倍管子内径的直管段,且不小于 300mm ; 5、当被量介质中含有固体悬浮物时,靶式流量计需要水平安装。靶式流量计安装在垂直管道上时,液体流向宜由下而上。靶式流量计人口端前直管段长度不应小于5倍管子内径,出口端后的直管段长度不应小于3倍管子内径。

凌金华

怎么解放锅炉操作员 #行业最新资讯# 在能源转换与利用领域,锅炉作为重要的热能转换设备,其运行效率与稳定性直接关系到整个能源系统的效能与安全。随着科技的飞速发展,传统的锅炉控制方式已难以满足现代工业对高效、智能、环保的迫切需求。而锅炉预测控制作为一种先进的控制策略,正逐步成为解决这一问题的关键所在。本文将深入探讨锅炉预测控制的基本原理、技术特点、应用优势以及未来发展趋势,以期为相关从业者提供有益的参考。 一、锅炉预测控制的基本原理 锅炉预测控制是一种基于数学模型和预测算法的控制策略,它通过对锅炉运行过程中的各种参数进行实时监测和预测,实现对锅炉燃烧、传热、流体流动等过程的精确控制。具体而言,锅炉预测控制主要包括以下几个步骤: 1. 数据采集与处理:通过传感器和仪表实时采集锅炉运行过程中的各种参数,如温度、压力、流量、煤质等,并进行预处理和滤波,以提高数据的准确性和可靠性。 2. 数学建模与预测:根据锅炉的物理特性和运行规律,建立相应的数学模型。利用历史数据和实时数据,通过预测算法对锅炉未来的运行状态进行预测,为控制策略的制定提供依据。 3. 优化控制策略:根据预测结果,结合锅炉的运行目标和约束条件,制定最优的控制策略。通过调整燃料供给、风量、水流量等参数,实现对锅炉运行过程的精确控制。 4. 反馈与调整:将控制策略实施后的实际运行效果与预测结果进行对比,分析误差产生的原因,并对预测模型和控制策略进行修正和优化,以提高控制的准确性和鲁棒性。 二、锅炉预测控制的技术特点 锅炉预测控制具有以下几个显著的技术特点: 1. 预测性:通过数学建模和预测算法,能够提前预测锅炉未来的运行状态,为控制策略的制定提供足够的时间窗口,避免了传统控制方式中的滞后和误判。 2. 精确性:利用高精度传感器和仪表实时采集数据,结合先进的数学模型和预测算法,能够实现对锅炉运行过程的精确控制,提高了控制的准确性和稳定性。 3. 智能性:锅炉预测控制能够自主学习和适应锅炉运行过程中的各种变化,通过不断修正和优化预测模型和控制策略,提高了控制的智能化水平。 4. 经济性:通过精确控制锅炉的运行过程,能够减少燃料的浪费和排放物的生成,降低能耗和排放成本,提高锅炉的经济性。 三、锅炉预测控制的应用优势 锅炉预测控制在能源转换与利用领域具有广泛的应用优势: 1. 提高锅炉运行效率:通过精确控制锅炉的燃烧、传热和流体流动等过程,能够充分利用燃料的热能,提高锅炉的热效率 ,降低能耗。 2. 增强锅炉运行稳定性:锅炉预测控制能够实时监测和预测锅炉的运行状态,及时发现并处理潜在的故障和异常,确保锅炉的稳定运行。 3. 减少排放物生成:通过精确控制锅炉的燃烧过程,能够减少氮氧化物、二氧化硫等有害物质的生成,降低对环境的污染。 4. 优化能源利用结构:锅炉预测控制能够根据能源市场的变化和需求,灵活调整锅炉的运行策略和燃料配比,优化能源利用结构,提高能源利用效率。 四、锅炉预测控制的未来发展趋势 随着科技的不断进步和能源领域的快速发展,锅炉预测控制将呈现以下发展趋势: 1. 集成化与智能化:锅炉预测控制将与物联网、大数据、人工智能等先进技术相结合,实现更加集成化和智能化的控制。通过实时监测和分析锅炉运行数据,能够实现对锅炉运行状态的智能预警和故障诊断,提高控制的智能化水平。 2. 高精度与自适应:随着传感器和仪表技术的不断进步,锅炉预测控制将实现更高精度的数据采集和处理。同时,通过不断学习和适应锅炉运行过程中的各种变化,能够实现对锅炉运行过程的自适应控制,提高控制的准确性和鲁棒性。 3. 环保与节能:随着环保和节能意识的不断提高,锅炉预测控制将更加注重环保和节能方面的应用。通过精确控制锅炉的燃烧过程,能够减少排放物的生成,降低能耗和排放成本,推动能源行业的可持续发展。 4. 标准化与模块化:为了提高锅炉预测控制的通用性和可移植性,未来将更加注重其标准化和模块化设计。通过制定统一的标准和规范,能够实现对不同型号和规格的锅炉进行统一控制和管理,降低开发和维护成本。 五、结语 综上所述,锅炉预测控制作为一种先进的控制策略,在能源转换与利用领域具有广泛的应用前景和巨大的发展潜力。通过不断研究和实践,我们可以不断完善和优化锅炉预测控制的技术和方法,推动其在实际应用中的广泛推广和应用。同时,我们也应积极探索和创新新的控制策略和技术手段,以应对未来能源领域面临的挑战和机遇。让我们携手共进,共同推动能源行业的可持续发展!

凌金华

pH计5大常见问题汇总,超实用! #行业最新资讯# 电位测定系统中的电极组成形式电位测定系统中的pH电极与参比电极的组成形式:1、单体pH电极+参比电极(pH电极和参比电极是分开的,一共两个电极)1-Ag/AgCl参比芯;2-参比电解液;3-隔膜;4-H+离子感应玻璃膜;2、复合pH电极(pH电极和参比电极是复合在一个电极上的)1-电极电缆线接口;2-参比电解液填充口;3-电极杆;4-电极头;pH电极的活性部分:1-参比电极的Ag/AgCl参比芯;2-电解液隔膜,参比电极的隔膜;3-玻璃膜(相当于测量电极)。pH计的工作原理以单体pH电极+参比电极为例:电位测试过程中,参比电极和pH电极与待测溶液接触,并存在以下电位差 :U1-玻璃膜相对于测定溶液电位;U2-隔膜扩散电位;U3-内参比电极相对于参比液电位;U4-参比电极电位;对于一个指定的电极对而言,其中U3和U4的数值是恒定的,也可通过适当的方法,使参比电极隔膜扩散电位U2很小,并保持恒定,以使两电极间测定的电位数值只与U1有关。U1是玻璃膜相对于测定溶液电位,U1数值的大小与待测溶液的氢离子活度有关。从pH电极感应H+活度变化的机理(可参考电极干货系列(一)—pH电极感应机理与电极构造及分类)可得知,一个pH电极感应H+活度变化的部位是玻璃膜。玻璃膜表面有一层大约0.1mm的水合层,在酸性条件下,待测溶液中的氢离子进入到水合层,在碱性条件下,水合层中的氢离子扩散到待测溶液中,这种进入和扩散过程会形成一个膜电位,即为U1。pH电极测定电位过程中电位变化、玻璃膜相对于测定溶液电位U1与待测溶液的氢离子活度关系可根据Nernst方程进行推断和计算:其中U0=U2+U3+U4U:指示电极与参比电极间的电位;U0:电极标准电位,与电极结构有关;R:气体常数(8.31441J•K-1•mol-1);Z:分析离子H+的电荷数(此时Z=1);F:法拉第常数(96484.56C·mol-1);T:绝对温度K(T=t+273.15);Nernst方程中的斜率是指理论电极斜率,电极斜率对应于分析离子变化引起的十幂次方的电位变化,与电极的结构、温度及待测离子的电荷有关。对于一价正电荷离子(z=+1),25℃时,理论电极斜率等于59.16mV。误差校正理论上,0~7~14pH的发生电位差在25℃时为+414mV~0~-414mV左右。在能斯特方程式中,电位差大约会变化-59mV,但实际上1pH的变化大约会变化-58mV,此外对于强酸性与强碱性由于玻璃膜的材质以及液体的种类不同,会产生误差。pH计的电位差pH计的校正使用符合JIS标准的pH标准液。pH标准液包括草酸盐(1.68pH)、酞酸盐(4.01pH)、中性磷酸盐(6.86pH)、磷酸盐(7.41pH)、硼酸盐(9.18pH)、碳酸盐(10.01pH)。pH计的使用方法(步骤)pH计使用前的准备工作1.使用pH计之前先用三蒸水清洗电极,注意玻璃电极不要碰碎。2.准备在平台pH计的旁边放至调节用的NaOH液和HCl液。3.在冰箱中拿出定pH液(pH=7.0),放与平台上。4.打开pH计,调定pH值,按︿﹀键选择pH和CAL选项,选择其中的CAL项,调节插入到pH液(pH=7.0)中,按《》键选择数据值到7.0处,出现小八叉即可。5.将玻璃电极插入到待测的溶液中,再放入另一电极,适当的搅动液面(注意:不要碰碎玻璃电极)。6.pH计的电子单元使用必须注意电路的保护,在不进行pH值测量时,要将pH计的输入短路,以避免pH计的损坏。7.pH计的玻璃电极插座必须保持干净、清洁和干燥,不能接触盐雾和酸雾等有害气体,同时严禁玻璃电极插座上沾有任何的水溶液,以避免pH计高输入阻抗。8.未到你需要的pH值时要小心的加如NaOH液和HCl液,(据调节范围不同可以选择不同浓度的调节液,浓度小时可以快加,浓度大时要加慢)。9.加液时小心不要超过所需的定容量。pH计使用注意事项1.一般情况下,pH计仪器在连续使用时,每天要标定一次;一般在24小时内仪器不需再标定。2.使用前要拉下pH计电极上端的橡皮套使其露出上端小孔。3.标定的缓冲溶液一般第一次用pH=6.86的溶液,第二次用接近被测溶液pH值的缓冲液,如被测溶液为酸性时,缓冲液应选pH=4.00;如被测溶液为碱性时则选pH=9.18的缓冲液。4.测量时,电极的引入导线应保持静止,否则会引起测量不稳定。5.电极切忌浸泡在蒸馏水中。pH计所使用的电极如为新电极或长期未使用过的电极,则在使用前必须用蒸馏水进行数小时的浸泡,这样pH计电极的不对称电位可以被降低到稳定水平,从而降低电极的内阻。6.pH计在进行pH值测量时,要保证电极的球泡完全进入到被测量介质内,这样才能获得更加准确的测量结果。7.pH计使用时,要去除参比电极点解液加液口的橡皮塞,这样参比电解液就能够在重力的。pH计的保养1.pH计玻璃电极的贮存pH计短期内不用时,可充分浸泡在饱和氯化钾溶液中。但若长期不用,应将其干放,切忌用洗涤液或其他吸水性试剂浸洗。2.pH玻璃电极的清洗玻璃电极球泡受污染可能使电极响应时间加长。可用CCl4或皂液揩去污物,然后浸入蒸馏水一昼夜后继续使用。污染严重时,可用5%HF溶液浸10~20分钟,立即用水冲洗干净,然后,浸入0.1N HCl溶液一昼夜后继续使用。3.玻璃电极老化的处理玻璃电极的老化与胶层结构渐进变化有关。旧电极响应迟缓,膜电阻高,斜率低。用氢氟酸浸蚀掉外层胶层,经常能改善电极性能。若能用此法定期清除内外层胶层,则电极的寿命几乎是无限的。4.参比电极的贮存银-氯化银电极最好的贮存液是饱和氯化钾溶液,高浓度氯化钾溶液可以防止氯化银在液接界处沉淀,并维持液接界处于工作状态。此方法也适用于复合电极的贮存。

凌金华

年需求100万吨生物质-燃煤电厂掺烧生物质燃料选择与技术适配分析 #行业最新资讯# 一、生物质燃料可得性与供应链稳定性1.木质颗粒- 原料可得性:主要依赖林业资源(木屑、木材加工副产品),集中分布于东北林区、南方速生林基地等。电厂若位于林区或木材产业带,则年供应100万吨生物质燃料需构建规模化供应链;非林区电厂则可能需跨省调运原料,汽车经济运输半径可达500km,同时也适应水运,目前已经成为一种全球运输的能源贸易产品。- 预处理要求:需破碎至粒径<10mm,含水率<15%,适配直接混合燃烧技术。2.木片- 原料可得性:木片直接来源于木材破碎,对于在林区或周围木业丰富电厂而言,应考虑在200公里运输半径内可确保稳定供应。 - 预处理要求:破碎至粒径<30mm,含水率需降至20%以下,否则易导致制粉系统效率下降。 3.秸秆打捆- 原料可得性:农业区(如东北、华北)年秸秆产量超过8亿吨,但需构建集中收储网络以应对季节性供应特征。满足100万吨需求需覆盖半径50-100公里的农业区域,并配备烘干设备控制含水率在25%以下。- 预处理要求:要求精细化除杂至含杂率低于5%,粒径破碎至小于30mm,并添加防结焦剂。 4.秸秆压块成型燃料 - 原料可得性:来源分散但加工后可集中供应,适配农业区分布式压块加工厂,运输半径可达200-300公里。年供应100万吨需布局10—15个中型压块厂(单厂产能6万-10万吨/年)。 - 预处理要求:压缩密度0.8—1.1g/cm³,含水率<20%,适配间接气化或并联燃烧技术。 5.对比结论: - 农业区优先选择秸秆压块,通过分布式加工网络平衡季节性供应风险; - 区林优先选择木质颗粒或木片,需配套破碎与干燥设备; - 秸秆打捆仅适合电厂周边50公里内资源密集区域,需高额预处理投资。二、掺烧技术适配性与锅炉改造要点1.直接混合燃烧 - 适用燃料:木质颗粒、烘焙生物质。 - 技术优势:无需大规模锅炉改造,木质颗粒能直接与煤粉入炉混燃,热值利用率高,锅炉效率下降不超过0.5%。 - 改造要点:增设防回火料斗与螺旋上料机;优化配风系统(二次风补入比例提升5%~10%)。 2.间接气化燃烧 - 适用燃料:秸秆压块、打捆、低质量木片。 - 技术优势:气化后的生物质煤气被喷入煤粉炉中,这一做法有效避免了高氯、高碱金属对锅炉的直接腐蚀,同时实现了高达20%的掺烧比例。 - 改造要点:增设气化炉与燃气净化系统(投资增加15%~20%);优化燃气喷入位置(避免高温区结焦)。 3.并联燃烧(蒸汽侧耦合) - 适用燃料:秸秆压块、木片。 - 技术优势:独立生物质锅炉与煤粉炉蒸汽系统集成,可适应多种燃料,热效率达84%~86%。 - 改造要点:新建生物质锅炉(炉排型或循环流化床);蒸汽管道与控制系统升级。 4.技术适配优先级- 高热值燃料(木质颗粒、烘焙生物质)适配直接混烧,改造成本最低; - 中低热值燃料(秸秆类)需配套气化或并联燃烧,投资较高但可规避腐蚀风险。三、燃料特性对锅炉效率与寿命的影响1.热值与燃烧效率- 木质颗粒:热值介于4200至4500千卡/千克之间,掺烧比例达20%时,锅炉效率降低小于1%。- 秸秆压块:热值3800-4200 kcal/kg,气化后热值利用率提升至80%,效率下降约4%~6%。- 秸秆打捆:热值3200-3800 kcal/kg,直接混烧效率下降5%~8%。2.腐蚀与磨损风险 - 秸秆类燃料:高氯(水稻秸秆Cl⁻达0.5%)、高碱金属(K、Na)易引发高温腐蚀,需采用SA-213TP347H抗腐蚀钢材或低温燃烧技术(<800℃)。- 木质燃料:灰分<1%,硫含量低,对锅炉寿命影响最小。 3.灰分与结渣控制 - 秸秆灰分:3%~5%,熔点低(<1000℃),需配套旋风除尘+水膜净化设备。 - 木质灰分:<1%,无需额外清灰系统。 4.运维建议: - 对于秸秆类燃料的掺烧,需每月检查炉膛结焦状况,并每年对高温区的受热面管道进行更换。 - 木质燃料可延长检修周期至2年。四、综合推荐方案1.燃料-技术匹配策略 - 方案一(林区电厂): - 燃料:木质颗粒(60%)+木片(40%); - 技术:直接混合燃烧(木质颗粒)+破碎预处理(木片); - 优势:热值稳定可靠,改造投资较低(约为5000万元)。 - 方案二(农业区电厂):- 燃料:秸秆压块(70%)+烘焙生物质(30%); - 技术:间接气化(压块)+直接混烧(烘焙生物质); - 优势:原料成本低廉(约400元/吨),减排效果十分显著。 2.供应链管理要点 - 秸秆压块:建立“农户-压块厂-电厂”三级收储体系,配套移动式破碎设备降低运输成本。- 木质颗粒:与相关企业签订长期供应协议,锁定价格波动风险。3.经济性测算(年需求100万吨)- 秸秆压块:燃料成本4亿-6亿元/年,预处理与气化设备投资2亿-3亿元; - 木质颗粒:燃料成本8亿-12亿元/年,改造投资0.5亿-1亿元; - 投资回收期:需要综合考虑燃料成本、锅炉效率和锅炉维修成本对改造投资回收期的影响。 五、建议与结论1.区域化选择优先级 - 东北/华北农业区:采用秸秆压块与间接气化技术,并配套分布式加工网络; - 南方林区/沿海进口便利区:利用木质颗粒进行直接混烧,同时依托相关的供应链; - 老旧电厂改造:采用烘焙生物质(即热解炭化技术),以适配原有的制粉系统。 2.政策与技术协同 - 积极争取秸秆收储相关的补贴政策,如农机购置补贴和仓储建设补助等; - 引入烘焙、气化等预处理技术降低燃料差异性。 3.风险管控- 建立原料储备库,储备量足以应对3个月的季节性断供问题; - 与科研机构合作开发低氯秸秆预处理工艺。 4.结论- 若电厂资金充裕且追求长期稳定,优先选择木质颗粒直接混烧; - 若以降本为核心且原料供应可靠,优先考虑秸秆压块气化; - 避免未预处理的秸秆打捆直接混烧,需严格配套除杂与防腐系统。联合优发专注于碳中和服务、碳资产管理和零碳热能服务,以提供生物质零碳解决方案为使命,推动零碳社会建设。企业碳中和业务始于2005年,近20年为国内外上千家客户/机构提供多项能源/双碳领域服务,管理碳资产超 5000 万吨,团队经验丰富!
今日注册人数
5118
今日找供应人数
2091
今日找求购人数
5167
今日加入群人数
10286
今日热门资讯